

Free Diameter \& Ring Measurements with Section B-B

Shaft Diameter \&
Groove Dimensions

Clearance Diameter Installed In Groove

$\begin{aligned} & \hline \text { RING } \\ & \text { NO. } \end{aligned}$	SHAFT DIAMETER			GROOVE SIZE					RING SIZE \& WEIGHT					CLEARANCE DIA.		î THRUST LD. (lbs.) Sqr. Corner Abutment			
				DIAMETER		WIDTH		DEPTH	FREEDIAMETER		THICKNESS**		Wght. Per 1000 Pcs.	Free out- side dia. REF.	Released in groove				
				Ring Safety factor of 4	Groove Safety factor of 2														
	Ds	Ds	Ds																
	DEC	FRACT	mm	Dg	Tol.	W	Tol.	d	Df	Tol.	T	Tol.	lbs.	G	L2	Pr	Pg		
C-12	. 125	1/8	3.2	. 106	$\begin{aligned} & \pm .0015 \\ & \star .0015 \end{aligned}$. 020	$\begin{aligned} & +.002 \\ & -.000 \end{aligned}$	0095	102	$\begin{aligned} & +.002 \\ & -.004 \end{aligned}$. 015	\% $\quad .030$. 165	. 18	86	45		
C-15	. 156	5/32	4.0	. 135		. 020		. 0105	. 131		. 015	(. 052	. 205	. 22	102	55		
C-18	. 188	3/16	4.8	. 165		. 020		. 011	. 161		. 015		. 062	. 244	. 25	132	70		
C-21	. 219	7/32	5.6	. 193	$\pm .002^{*} 0015$. 029	$\begin{gathered} +.003 \\ -.000 \end{gathered}$. 013	. 187	$\begin{aligned} & +.003 \\ & -.005 \end{aligned}$. 025		. 120	. 275	. 29	264	100		
C-23	. 236	15/64	6.0	. 208	$\pm .002^{*} .002$. 029		. 014	. 203		. 025		. 15	. 295	. 31	284	115		
C-25	. 250	1/4	6.4	. 220	$\stackrel{ \pm .002}{* .002}$. 029		. 015	211		. 025		. 157	. 311	. 33	294	130		
C-28	. 281	9/32	7.1	. 247		. 029		. 017	242		. 025		. 19	. 346	. 36	335	165		
C-31	. 312	5/16	7.9	. 276		. 029		. 018	270		. 025		. 226	. 376	. 39	376	200		
C-37	. 375	3/8	9.5	. 335		. 029		. 020	. 328		. 025		. 300	. 448	. 47	447	270		
C-40	. 406	13/32	10.3	. 364		. 029		. 021	. 359		. 025		. 352	. 486	. 50	487	300		
C-43	. 438	7/16	11.1	. 393		. 029		. 022	. 386		. 025		. 359	. 517	. 53	528	350		
C-50	. 500	1/2	12.7	. 450	$\begin{gathered} \pm .003 \\ \star .004 \end{gathered}$. 039		. 025	. 441	$\pm .006$. 035		. 671	. 581	. 60	842	450		
C-56	. 562	9/16	14.3	. 507		. 039		. 028	. 497		. 035		. 710	. 653	. 67	944	550		
C-62	. 625	5/8	15.9	. 563		. 039		. 031	. 553		. 035		. 937	. 715	. 74	1045	700		
C-68	. 688	11/16	17.5	. 619		. 046		. 034	. 608	$\pm .007$. 042		1.3	. 784	. 80	1726	800		
C-75	750	3/4	19.0	. 676		. 046		. 037	. 665		. 042		1.5	. 845	. 87	1878	1000		
C-81	. 812	13/16	20.6	. 732		. 046		. 040	. 721		. 042		1.7	. 915	. 94	2040	1150		
C-87	. 875	7/8	22.2	. 789		. 046		. 043	. 777		. 042		2.0	. 991	1.01	2202	1300		
C-93	. 938	15/16	23.8	. 843		. 046		. 047	. 830		. 042		2.3	1.058	1.08	2355	1550		
C-100	1.000	1	25.4	. 900		. 046		. 050	. 887		. 042		2.7	1.130	1.15	2517	1800		
C-112	1.125	1-1/8	28.6	1.013	$\begin{aligned} & \pm .004 \\ & \star .005 \end{aligned}$. 056	$\begin{gathered} +.004 \\ -.000 \end{gathered}$. 056	. 997	$\pm .008$. 050		4.0	1.267	1.30	3370	2200		
C-125	1.250	1-1/4	31.7	1.126		. 056		. 062	1.110		. 050		5.1	1.415	1.44	3735	2700		
C-137	1.375	1-3/8	34.9	1.237		. 056		. 069	1.220		. 050		6.1	1.555	1.58	4111	3350		
C-150	1.500	1-1/2	38.1	1.350		. 056		. 075	1.331		. 050		7.6	1.691	1.72	4486	4000		
C-162	1.625	1-5/8	41.3	1.483	$\begin{aligned} & \pm .005 \\ & \star .005 \end{aligned}$. 068		. 071	1.463	$\pm .010$. 062	$\pm .003$	11.0	1.853	1.88	5506	4650		
C-175	1.750	1-3/4	44.4	1.576		. 068		. 087	1.555		. 062		12.9	1.975	2.01	6526	5300		
C-200	2.000	2	50.8	1.800		. 068		. 100	1.777		. 062		16.2	2.257	2.30	7410	7000		

*F.I.M.(FULL INDICATOR MOVEMENT)-MAXIMUM ALLOWABLE DEVIATION OF CONCENTRICITY BETWEEN GROOVE AND SHAFT.
i BASED ON HOUSINGS/SHAFTS MADE OF COLD ROLLED STEEL. FOR AN EXPLANATION OF FORMULAS USED TO DERIVE
THRUST LOAD AND OTHER PERFORMANCE DATA, CONTACT THE ROTOR CLIP ENGINEERING DEPT.
*ぇ FOR PLATED RINGS ADD . 002 " TO THE LISTED MAXIMUM THICKNESS. MAXIMUM RING THICKNESS WILL BE A MINIMUM OF .0002" LESS THAN THE LISTED GROOVE WIDTH (W) MINIMUM.

Maximum Corner Radius \& Chamfer

$\begin{aligned} & \hline \text { RING } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { MAXIMUM } \\ & \text { SECTION } \end{aligned}$		$\begin{aligned} & \text { ALLOWABLE } \\ & \text { CORNER } \\ & \text { RADII \& } \\ & \text { CHAMFERS } \end{aligned}$		MAX LOAD w/ R max or Ch max (in lbs.)	$\begin{gathered} \text { EDGE } \\ \text { MARGIN } \end{gathered}$	R.P.M. LIMITS Stan- dard material
	S max	Tol.	R max	Ch max	P'r	Y	
C-12	. 031	$\pm .003$. 014	. 011	85	. 020	80000
C-15	. 037		. 018	. 014	100	. 020	75000
C-18	. 042		. 021	. 016	110	. 022	73000
C-21	. 044		. 021	. 016	260	. 026	71000
C-23	. 046	$\pm .004$. 022	. 017	275	. 028	62000
C-25	. 050		. 023	. 018	290	. 030	60000
C-28	. 051		. 021	. 016	310	. 034	56000
C-31	. 053		. 024	. 018	310	. 036	52000
C-37	. 060		. 026	. 020	310	. 040	43000
C-40	. 063		. 027	. 021	310	. 042	40000
C-43	. 065		. 029	. 022	310	. 044	31000
C-50	. 070	$\pm .005$. 030	. 023	610	. 050	25000
C-56	. 078		. 033	. 025	610	. 056	22000
C-62	. 081		. 033	. 025	610	. 062	20000
C-68	. 086		. 034	. 026	880	. 068	18500
C-75	. 090		. 036	. 027	880	. 074	17500
C-81	. 097		. 038	. 029	880	. 080	16000
C-87	. 105		. 040	. 031	880	. 086	15000
C-93	. 112		. 043	. 033	880	. 094	14000
C-100	. 120		. 046	. 035	880	. 100	12500
C-112	. 135	$\pm .007$. 052	. 040	1250	. 112	11500
C-125	. 150		. 057	. 044	1250	. 124	10500
C-137	. 165		. 062	. 048	1250	. 138	9500
C-150	. 180		. 069	. 053	1250	. 150	8500
C-162	. 195		. 075	. 058	1920	. 162	8000
C-175	. 210		. 081	. 062	1920	. 174	7500
C-200	. 240		. 091	. 070	1920	. 200	6000

LARGER SIZES MAY BE AVAILABLE UPON REQUEST.

Enlarged Groove Profile \& Edge Margin (Y) Maximum bottom radii (R), . 005 For rings sizes -12 thru $-43 ; .010$ For ring sizes -46 thru -100 ; . 015 For sizes -112 thru -200

HARDNESS RANGES: STAINLESS STEEL RINGS (PH 15-7MO)

RING TYPE	SIZE RANGE	SCALE	ROCKWELL HARDNESS
	$12-18$	15 N	$82.5-86^{\star}$
	$21-81$	30 N	$63-69.5$
	$87+$	C	$44-51$

HARDNESS RANGES: BERYLLIUM COPPER RINGS

RING TYPE	SIZE RANGE	SCALE	ROCKWELL HARDNESS
	$12-62$	15 N	$77-82^{*}$
	$68-81$	30 N	$54-62$
	$87+$	C	$34-43$

HARDNESS RANGES: CARBON STEEL RINGS (SAE 1060-1090)

RING TYPE	SIZE RANGE	SCALE	ROCKWELL HARDNESS
	$12-18$	15 N	$86-88.5^{\star}$
	$21-43$	30 N	$67.5-72$
	$50-81$	30 N	$66-71$
	$87+$	C	$47-52$

*HARDNESS CAN NOT BE CHECKED WITH ANY DEGREE OF ACCURACY DIRECTLY ON THESE RINGS.

